New update is available. Click here to update.

Last Updated: 6 Dec, 2020

Easy

```
The first line contains a single integer T representing the number of test cases.
The T-test cases are as follows:
Line 1:The first line contains an integer, that denotes the value of N.
Line 2:The following line contains N space-separated integers, that denote the values of the weight of items.
Line 3:The following line contains N space-separated integers, that denote the values associated with the items.
Line 4:The following line contains an integer that denotes the value of W. W denotes the maximum weight that a thief can carry.
```

```
The first and only line of output contains the maximum value that a thief can generate, as described in the task.
The output of every test case is printed in a separate line.
```

```
1 <= T <= 10
1 <= N <= 10^2
1<= wi <= 50
1 <= vi <= 10^2
1 <= W <= 10^3
Time Limit: 1 second
```

```
Can we solve this using space complexity of not more than O(W)?
```

**Approach:** In the Dynamic programming we will work considering the same cases as mentioned in the recursive approach. In a DP[][] table let’s consider all the possible weights from ‘1’ to ‘W’ as the columns and weights that can be kept as the rows.

The state DP[i][j] will denote maximum value of ‘j-weight’ considering all values from ‘1 to ith’. So if we consider ‘wi’ (weight in ‘ith’ row) we can fill it in all columns which have ‘weight values > wi’. Now two possibilities can take place:

- Fill ‘wi’ in the given column.
- Do not fill ‘wi’ in the given column.

Now we have to take a maximum of these two possibilities, formally if we do not fill ‘ith’ weight in ‘jth’ column then DP[i][j] state will be same as DP[i-1][j] but if we fill the weight, DP[i][j] will be equal to the value of ‘wi’+ value of the column weighing ‘j-wi’ in the previous row. So we take the maximum of these two possibilities to fill the current state. This visualization will make the concept clear: