Data Science & Machine Learning Complete
1. Data Science & Machine Learning Complete Course 
Introduction To Python
Conditions and Loops
Patterns
More on Loops
Functions
Tuples, Dictionary And Sets
Object Oriented Programming Systems(OOPs)
Pandas
Plotting Graphs
Structured Query Language(SQL) - Basic
Structured Query Language(SQL) - Advance
Indexing And SQLite
Application Programming Interfaces(APIs) - II
Web Scraping - BeautifulSoup
Web Scraping - Selenium
Web Scraping : Advanced Selenium
Statistics
Descriptive Statistics
Introduction to Machine Learning
Linear Regression
MultiVariable Regression And Gradient Descent
Feature Scaling
Logistic Regression
Classification Measures
Decision Trees - I
Decision Trees - II
Random Forests
Naive Bayes
Project: Text Classification
K-Nearest Neighbours(K-NN)
Support Vector Machine(SVM)
Principal Component Analysis(PCA) - I
Principal Component Analysis(PCA) - II
Natural Language Processing(NLP) - I
Natural Language Processing(NLP) - II
Neural Networks - I
Neural Networks - II
Tensor Flow
Keras
Convolutional Neural Network(CNN) - I
Convolutional Neural Network(CNN) - II
Recurrent Neural Network(RNN)
Long Short-Term Memory(LSTM)
Unsupervised Learning - I
Unsupervised Learning - II
Git
Topics

Introduction to clustering

Using KMeans for Flat Clustering

KMeans Algorithm

Using KMeans from SKLearn

Starter Code for KMeans

Implementing Fit & Predict Functions
