1

Nth Element Of Modified Fibonacci Series

Difficulty: EASY
Avg. time to solve
15 min
Success Rate
85%

Problem Statement
Suggest Edit

You have been given two integers ‘X’ and ‘Y’ which are the first two integers of a series and an integer ‘N’. You have to find the Nth number of the series using the Fibonacci rule given by f(x) = f(x - 1) + f(x - 2).

The answer may be very large, return it after modulus 10 ^ 9 + 7.

Note:

The series is 1-based indexed.
Input Format:
The first line contains an integer T denoting the number of test cases. Then each test case follows.

The first line of each test case contains three space-separated integers ‘X’, 'Y', and ‘N’, respectively where ‘X’ and ‘Y’ represent the first and second element of the series while N represents which number of the sequence we have to find out.
Output Format:
For each test case, print a single line containing a single integer denoting the Nth number of the series.

The output of each test case will be printed in separate lines.
Note
You are not required to print the expected output; it has already been taken care of. Just implement the given function.
Constraints:
1 <= T <= 100
1 <= N <= 10 ^ 18
-10 ^ 6 <= X, Y <= 10 ^ 6

Time limit: 1 sec.
Sample Input 1:
2
2 3 4
-1 -2 1
Sample output 1:
8
1000000006
Explanation of Sample output 1:
For the first test case, the series will be 2, 3, 5, 8, 13. So the 4th element will be 8.

For the second test case, the series will be -1, -2, -3, -5, -8. So, the 1st element will be -1. As we are supposed to modulate this with 10^9 + 7, we will get 1000000006.
Sample Input 2:
1
2 3 4
Sample output 2:
8
Reset Code
Full screen
copy-code
Console