Problem title
Difficulty
Avg time to solve

Rearrange Linked List
Moderate
22 mins
Algorithm to find best insert position in sorted array
Easy
10 mins
Jump Game
Moderate
15 mins
Remove Consecutive Duplicates
Easy
--
Funny Divisors
Easy
15 mins
Convert BST to Min Heap
Moderate
25 mins
Shortest Substring with all characters
Easy
--
Min Steps to one
Easy
15 mins
Fractional Knapsack
Easy
15 mins
Roman Numeral To Integer
Easy
15 mins
16

DFS Traversal

Difficulty: MEDIUM
Contributed By
Anish De |Level 1
Avg. time to solve
35 min
Success Rate
65%

Problem Statement

Given an undirected and disconnected graph G(V, E), containing 'V' vertices and 'E' edges, the information about edges is given using 'GRAPH' matrix, where i-th edge is between GRAPH[i][0] and GRAPH[i][1]. print its DFS traversal.

V is the number of vertices present in graph G and vertices are numbered from 0 to V-1. 

E is the number of edges present in graph G.
Note :
The Graph may not be connected i.e there may exist multiple components in a graph.
Input Format :
The first line of input will contain two Integers V and E, separated by a single space.

From the second line onwards, the next 'E' lines will denote the undirected edge of the graphs. 

Every edge is defined by two single space-separated integers 'a' and 'b', which signifies an edge between the vertices 'a' and 'b'.
Output Format :
The first line of output will contain the size of the connected components.

For every connected component in the graph, print the vertices of the component in the sorted order of the vertex values separated with a single space.

Print each component in on a different line by making sure that the first vertex of each component is also sorted on the vertex values. 

A component having a smaller first vertex in sorted order will come first.
Constraints :
2 <= V <= 10^3
1 <= E <= (5 * (10^3))

Time Limit: 1sec
Sample Input 1:
5 4
0 2
0 1
1 2
3 4
Sample Output 1:
2
0 1 2
3 4
Explanation For Sample Input 1:
If we do a DFS traversal from vertex 0 we will get a component with vertices [0, 2, 1]. If we do a DFS traversal from 3 we will get another component with vertices [3, 4]

Hence,  we have two disconnected components so on the first line, print 2. Now, print each component in increasing order. On the first line print 0 1 2 and on the second line, print 3 4.

[0 1 2] comes before [3 4] as the first vertex 0 from the first component is smaller than the first vertex 3 from the second component.
Sample Input 2:
9 7
0 1
0 2
0 5
3 6
7 4
4 8
7 8
Sample Output 2:
3
0 1 2 5
3 6
4 7 8
Reset Code
Full screen
copy-code
Console