Deepest Leaves Sum

Posted: 15 Oct, 2020
Difficulty: Easy

PROBLEM STATEMENT

NOTE: The deepest level of a binary tree is the level which is present at the maximum depth from the root node.

Can you solve this problem in a single traversal of the binary tree?
Input Format:
The first line contains an integer 'T' which denotes the number of test cases or queries to be run. Then the test cases follow.

The only line of each test case contains elements in the level order form. The line consists of values of nodes separated by a single space. In case a node is null, we take -1 on its place.

For example, the input for the tree depicted in the below image will be: 1
2 3
4 -1 5 6
-1 7 -1 -1 -1 -1
-1 -1

Explanation :

Level 1 :
The root node of the tree is 1

Level 2 :
Left child of 1 = 2
Right child of 1 = 3

Level 3 :
Left child of 2 = 4
Right child of 2 = null (-1)
Left child of 3 = 5
Right child of 3 = 6

Level 4 :
Left child of 4 = null (-1)
Right child of 4 = 7
Left child of 5 = null (-1)
Right child of 5 = null (-1)
Left child of 6 = null (-1)
Right child of 6 = null (-1)

Level 5 :
Left child of 7 = null (-1)
Right child of 7 = null (-1)

The first not-null node(of the previous level) is treated as the parent of the first two nodes of the current level. The second not-null node (of the previous level) is treated as the parent node for the next two nodes of the current level and so on.
The input ends when all nodes at the last level are null(-1).
Note :
The above format was just to provide clarity on how the input is formed for a given tree.
The sequence will be put together in a single line separated by a single space. Hence, for the above-depicted tree, the input will be given as:

1 2 3 4 -1 5 6 -1 7 -1 -1 -1 -1 -1 -1
Output Format:
For each test case, print the sum of all the leaf nodes present at the deepest level of the given binary tree.

Print the output of each test case in a separate line.
Note:
You are not required to print the expected output, it has already been taken care of. Just implement the function.
Constraints:
1 <= T <= 10^2
0 <= N <= 3000
Where N is the number of nodes in the binary tree

The sum will always fit in a 32-bit integer.

Time Limit: 1 sec Approach 1

The idea is pretty simple. First, we will find the deepest level of the given binary tree, say ‘maxDepth’. We can do this with a single traversal of the binary tree.

After finding the deepest level of the binary tree, we will again traverse the given tree. Also, we will maintain a ‘sum’ and ‘currLevel’ variable for each node in the tree. Whenever the ‘currLevel’ which represents the level of the current node, is equal to the ‘maxDepth’, we will add this node in our ‘sum’ variable.

At last, the value of ‘sum’ will be our sum of all the nodes which are present in the deepest level of the binary tree.