Learn how has Data Science grown


The term Data Science must have crossed your eye multiple times. Trust us; this is not just a mere coincidence; it is associated with you. In this article, we are going to explain how data science can be related to almost everyone who is working in this span.

What is Data Science?

It is an amalgam of various tools, algorithms, methods to solve complex issues that emerged from all the information collected from the raw data. To foresee future problems and preparing models based on it is what a data scientist is ought to do. The aspect of data science is finding the necessary information from the raw data unveiling the hidden insight that can help the company to make quicker decisions. To make you understand even better here are some of the examples of how Data science works:

1. Netflix works on the understanding of your searches and sees what genre entertains you the most. Based on this information they take decisions on what kind of web series to produce and stream.

2. Spotify recommends music to you based on your choices.

3. Gmail manages to work with an algorithm to determine if the mail is junk or not and automatically sends it into the spam folder.

And now, let’s have a look at how Data Science has unfolded in the past few years:

Data Science and statistics are related

The saying that it can’t be more than statistics might not be entirely correct, but to an extent, it is, as most of the current lot has drifted from the engineering field. Recent researches have proved that a notable portion of data science will soon be fully automated. In many cases, nowadays a whole lot of individuals are floating in from different backgrounds, even people from economics backgrounds are guaranteeing to be Data Scientists.

Transition from Data- poor to Data -rich

As the organizations are approaching from data-poor to data-rich culture, both, a strong foundation in data science and pure science will be required. With the ever-growing speed in this industry, the enterprises are always trying to build new models and expand on the decisive learnings; the supply will indefinitely decrease. Individuals, after being in this field for a very long time are ready to turn into the profession of Data Science. You surely can’t become a data analyst with just one analytics track or a few months of online certification. Also, hands-on experience can help you in getting a clearer picture of the most critical problems related to Data Science.

Working with noisy-datasets

The current focus of big organizations is on using big data which develops analytics solutions to satisfying client goals. The natural substance of what data scientists do stays puzzling. To explain more, Data Scientists are nowadays are confronted to operate with challenging, heterogeneous and noisy datasets. Most newbies are not even aware of trending technologies and cutting-edge techniques. They have to bridge the gap between their current abilities and skills actually to approach a higher set of possibilities to solve any problem.

Knowledge of applied science wins

The Data Scientists who genuinely deeply learned the statistical strategies are kept in secret to prepare the essential elements which automatically get coordinated with the tools. Having a deep understanding of the statistical foundation might be helpful for you in the long run.

blog banner 1

What the future looks like?

According to Gartner’s research, by 2020, a significant part of data science will be automated. The tasks like recognizing the problem initially and data representation will be automated. And the remaining tasks which are model validation, feature engineering, machine learning and understanding the domain will be the core skills set to be a Data Scientist. Eventually, the interest to code as professionals who were mostly reliable on spreadsheets will shift to Python and R.

Learn more about Coding Ninjas and its fulfilling courses in programming.

Read more about Data Science, here.